Optimization of unconstrained functions with sparse hessian matrices-newton-type methods
نویسنده
چکیده
Newton-type methods for unconstrained optimization problems have been very successful when coupled with a modified Cholesky factorization to take into account the possible lack of positivedefiniteness in the Hessian matrix. In this paper we discuss the application of these methods to large problems that have a sparse Hessian matrix whose sparsity is known a priori. Quite often it is difficult, if not impossible, to obtain an analytic representation of the Hessian matrix. Determining the Hessian matrix by the standard method of finite-differences is costly in terms of gradient evaluations for large problems. Automat ic procedures that reduce the number of gradient evaluations by exploiting sparsity are examined and a new procedure is suggested. Once a sparse approximation to the Hessian matrix has been obtained, there still remains the problem of solving a sparse linear system of equations at each iteration, A modified Cholesky factorization can be used. However, many additional nonzeros (fill-in) may be created in the factors, and storage problems may arise. One way of approaching this problem is to ignore fill-in in a systematic manner. Such techniques are called partial factorization schemes. Various existing partial factorization are analyzed and three new ones are developed. The above algorithms were tested on a set of problems. The overall conclusions were that these methods perform well in practice.
منابع مشابه
Optimization of unconstrained functions with sparse Hessian matrices - Quasi-Newton methods
Newton-type methods and quasi-Newton methods have proven to be very successful in solving dense unconstrained optimization problems. Recently there has been considerable interest in extending these methods to solving large problems when the Hessian matrix has a known a priori sparsity pattern, This paper treats sparse quasi-Newton methods in a uniform fashion and shows the effect of loss of pos...
متن کاملOn the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملImproved Damped Quasi-Newton Methods for Unconstrained Optimization∗
Recently, Al-Baali (2014) has extended the damped-technique in the modified BFGS method of Powell (1978) for Lagrange constrained optimization functions to the Broyden family of quasi-Newton methods for unconstrained optimization. Appropriate choices for the damped-parameter, which maintain the global and superlinear convergence property of these methods on convex functions and correct the Hess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 29 شماره
صفحات -
تاریخ انتشار 1984